mmWave as a Key Enabler for 5G

5G North American Workshop
November 2014

Wonil Roh, Ph.D.
Vice President & Head of Advanced Communications Lab
DMC R&D Center, Samsung Electronics Corp.
Enabling Technologies : RAN & NW
Enabling Technologies - RAN (1/2)

Disruptive RAN Technologies for Significant Performance Enhancements

- Peak Data Rate
- Cell Edge Data Rate
- Cell Spectral Efficiency
- Mobility
- Cost Efficiency
- Simultaneous Connection
- Latency

Technology for Above 6 GHz

- Peak Data Rate Increase
 - Peak Rate 1 Gbps
 - New higher frequencies
 - Peak Rate 50 Gbps

Post-OFDM

- Spectral Efficiency & Cell Edge Enhancement
- Filter-Bank Multi-Carrier

Advanced MIMO & BF

- Cell Capacity Enhancement
- BF : Beamforming

Enabling Technologies - RAN (1/2)

Enabled RAN Technologies for Significant Performance Enhancements

- FSK QAM
- Half wavelength

© 2014 Samsung DMC R&D Communications Research Team
Enabling Technologies - RAN (2/2)

Disruptive RAN Technologies for Significant Performance Enhancements

Enhanced D2D
Areal Spectral Efficiency Increase

Advanced Small Cell
Capacity & Cell Edge Enhancement

Interference Management
Cell Edge Data Rate Enhancement

- Peak Data Rate
- Cell Edge Data Rate
- Cell Spectral Efficiency
- Mobility
- Cost Efficiency
- Simultaneous Connection
- Latency

D2D: Device-to-Device

© 2014 Samsung DMC R&D Communications Research Team
Enabling Technologies - Network

Innovative Network Technologies for Enhanced User Experience and Cost Reduction

- Flat Network
 - E2E Latency Reduction
 - Peak Data Rate
 - Cell Edge Data Rate
 - Cell Spectral Efficiency
 - Mobility

- Multi-RAT Interworking
 - Radio Capacity Enhancement
 - Energy & Cost Efficiency Increase
 - 4G eNB
 - 5G BS
 - Wi-Fi

- Mobile SDN
 - Central Controller
 - Simultaneous Connection
 - Cost Efficiency
 - Latency

SDN: Software Defined Network
Recent R&D Results Above 6GHz
Channel Measurements (1/2)

Three Types of Environments: In-Building, Campus, and Urban at 28GHz

In-Building
- Similar to Indoor Shopping-Mall
 - Five-story Building
 - Spacious Atrium Lobby
- Total 35 Rx Locations
 - Both for LoS and NLoS
 - Tx-Rx Distance: 10m ~ 55m

Campus
- Suburban Environments
 - KAIST Outdoor Campus
 - Tx Height 15 meters
 - Total 25 Rx Locations
 - Mainly for NLoS
 - Tx-Rx Distance: ~ 270m

Urban
- Urban Environments
 - Daejeon City
 - Tx Height 15 meters
 - 11 Rx Locations
 - Mainly for NLoS
 - Tx-Rx Distance: ~ 200m

© 2014 Samsung DMC R&D Communications Research Team
Pathloss (Urban)
- Currently 11 Rx Locations Available
 - All NLoS with 1 or 2 Reflections
 - Pathloss Exponent around 3
 - Shadowing Factor 6.3 dB

Clustering (Urban)
- K-Power-Means Algorithm
 - Based on Synthesized Omni Results
 - 10 Clusters are Good Compromise
 (3GPP SCM : 6, WINNER : 8~20)

Angle and Delay (Urban)
- Small Angle & Delay Spread
 - AoD : 5°, AoA : 25°
 - 90% RMS Delay : 55 ns

Large and Small Scale Channel Modeling to Produce SCM for High Frequency (28GHz)
mmWave Testbed - Overview

World’s First 5G mmWave Mobile Technology (May, 2013)
Adaptive array transceiver technology operating in mmWave frequency bands for outdoor cellular

<table>
<thead>
<tr>
<th>Base Station</th>
<th>Mobile Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Antenna
8x6 (≈48) Antenna Elements</td>
<td>Array Antenna
4x1 (≈4) Antenna Elements</td>
</tr>
<tr>
<td>RF + Array Antenna</td>
<td>RF + Array Antenna</td>
</tr>
<tr>
<td>UHD Streaming</td>
<td>Baseband Modem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency</td>
<td>27.925 GHz</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>800 MHz</td>
<td></td>
</tr>
<tr>
<td>Beamwidth (Half Power)</td>
<td>10°</td>
<td>20°(AZ) /140°(EL)</td>
</tr>
</tbody>
</table>

© 2014 Samsung DMC R&D Communications Research Team
mmWave Testbed - Recent Updates

World’s First 5G Data Transmission at Highway Speeds (Oct, 2014)
Record-breaking 1.2Gbps data transmission at over 100km/h, and 7.5Gbps in stationary conditions using 28GHz spectrum

5G Mobility Test
1.2Gbps @110km/h

Peak Data Rate
7.5Gbps

© 2014 Samsung DMC R&D Communications Research Team
mmWave Antenna/RFIC

28GHz Antenna and RFIC
360° Coverage and Polarization Interleaved Array and CMOS RFIC / FEM with One-Cable Connection Interface

28GHz Antenna

28GHz Array Antenna Module

160°

16 Chain

180°

Polarization Interleaved Array

Horizontal-Pol. Ant.

Vertical-Pol. Ant.

16 Chain

Antenna Gain

180°

28GHz RFIC

Beamforming CMOS RFIC / GaAs FEM

CMOS RFIC

GaAs FEM

One-Cable Connection

Measured Low Phase Noise

Phase Noise

-103 dBC/Hz

© 2014 Samsung DMC R&D Communications Research Team
mmWave Antenna/RFIC

60GHz Antenna and RFIC Based on IEEE 802.11ad

360° Coverage antenna and 16-chain beamforming CMOS RFIC (Tx/Rx EVM -25 dB)

60GHz Antenna

- **60GHz Module with Array Antenna**
 - End-Fire Antenna
 - Dual-Pol. Antenna
 - Module size: 9.0 X 7.9 mm²
 - 360° Coverage
 - Polarization Loss < 3 dB
 - D2D Active Measurement System
 - Embedded BB

60GHz RFIC

- **Beamforming CMOS RFIC**
 - EVM -25 dB
 - 16-chain Beamforming
 - Measured Low Phase Noise
 - Phase Noise -99 dBC/Hz

© 2014 Samsung DMC R&D Communications Research Team
Thank You
References

